RNase III processing of intervening sequences found in helix 9 of 23S rRNA in the alpha subclass of Proteobacteria.

نویسندگان

  • E Evguenieva-Hackenberg
  • G Klug
چکیده

We provide experimental evidence for RNase III-dependent processing in helix 9 of the 23S rRNA as a general feature of many species in the alpha subclass of Proteobacteria (alpha-Proteobacteria). We investigated 12 Rhodobacter, Rhizobium, Sinorhizobium, Rhodopseudomonas, and Bartonella strains. The processed region is characterized by the presence of intervening sequences (IVSs). The 23S rDNA sequences between positions 109 and 205 (Escherichia coli numbering) were determined, and potential secondary structures are proposed. Comparison of the IVSs indicates very different evolutionary rates in some phylogenetic branches, lateral genetic transfer, and evolution by insertion and/or deletion. We show that the IVS processing in Rhodobacter capsulatus in vivo is RNase III-dependent and that RNase III cleaves additional sites in vitro. While all IVS-containing transcripts tested are processed in vitro by RNase III from R. capsulatus, E. coli RNase III recognizes only some of them as substrates and in these substrates frequently cleaves at different scissile bonds. These results demonstrate the different substrate specificities of the two enzymes. Although RNase III plays an important role in the rRNA, mRNA, and bacteriophage RNA maturation, its substrate specificity is still not well understood. Comparison of the IVSs of helix 9 does not hint at sequence motives involved in recognition but reveals that the "antideterminant" model, which represents the most recent attempt to explain the E. coli RNase III specificity in vitro, cannot be applied to substrates derived from alpha-Proteobacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atypical processing in domain III of 23S rRNA of Rhizobium leguminosarum ATCC 10004(T) at a position homologous to an rRNA fragmentation site in protozoa.

For still unknown reasons, the 23S rRNA of many alpha-Proteobacteria shows a unique fragmentation pattern compared to other bacteria. The 23S rRNA processing involves RNase III and additional, yet unidentified enzymes. The alpha-proteobacterium Rhizobium leguminosarum ATCC 10004(T) possesses two fragmentation sites in its 23S rRNA. The first one harbors an intervening sequence in helix 9 which ...

متن کامل

RNase III deficient Salmonella typhimurium LT2 contains intervening sequences (IVSs) in its 23S rRNA.

Salmonella typhimurium LT2 contains intervening sequences (IVSs) of 90-110 nt within all its 23S rRNA that are cleaved out by RNase III, resulting in rRNA fragmentation. In order to determine the functionality of 23S rRNA that contains unexcised IVSs, we constructed an S. typhimurium RNase III (rnc) deficient strain by transducing a mini-Tn10 (rnc-14::Tn10) from Escherichia coli K-12. The resul...

متن کامل

Fragmentation of 23S rRNA in strains of Proteus and Providencia results from intervening sequences in the rrn (rRNA) genes.

Intervening sequences (IVSs) were originally identified in the rrl genes for 23S rRNA (rrl genes, for large ribosomal subunit, part of rrn operon encoding rRNA) of Salmonella enterica serovars Typhimurium LT2 and Arizonae. These sequences are transcribed but later removed during RNase III processing of the rRNA, resulting in fragmentation of the 23S species; IVSs are uncommon, but have been rep...

متن کامل

Genetic variations of avian Pasteurella multocida as demonstrated by 16S-23S rRNA gene sequences comparison

Pasteurella multocida is known as an important heterogenic bacterial agent causes some severe diseases such as fowl cholera in poultry and haemorrhagic septicaemia in cattle and buffalo. A polymerase chain reaction (PCR) assay was developed using primers derived from conserved part of 16S-23S rRNA gene. The PCR amplified a fragment size of 0.7 kb using DNA from nine avian P. multocida  isolates...

متن کامل

Phylogenetic analysis and evolution of RNase P RNA in proteobacteria.

The secondary structures of the eubacterial RNase P RNAs are being elucidated by a phylogenetic comparative approach. Sequences of genes encoding RNase P RNA from each of the recognized subgroups (alpha, beta, gamma, and delta) of the proteobacteria have now been determined. These sequences allow the refinement, to nearly the base pair level, of the phylogenetic model for RNase P RNA secondary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 182 17  شماره 

صفحات  -

تاریخ انتشار 2000